

New Classes of Antibiotics From Phage Genomics

From Phage Genomics To Antimicrobial Drug Discovery

PhageTech Drug Discovery Tools

The PhageTech Advantage in Antimicrobial Discovery

 Proprietary screening assays and tools developed at PhageTech exploit the interaction between phage-encoded antimicrobial proteins and their cognate targets in bacteria

 PhageTech aims to identify small molecule drug candidates that inhibit the same targets as the phage inhibitory ORFs do

Key advantages of the PhageTech approach:

- speed of analysis of small phage genomes
- inherent validation of the bacterial target by evolution
- rapid access to diversified targets
- requisite positive control for target screening assays

Genome Map for S. aureus Phage 77

Bacteriophage 77, 41708 nucleotides 100 genes Minimal gene size: 33 amino acids

0	1 1		5000 	1	1 1	10	9 90	1 1	15000		2000	90 	:	25000		:	30000		350 	000	1 1	4000	0 41708
037	◀ 052 (→ 015 → 006	• •	+	► 034 ◀ 179		047 024	004	130 130 28 076	 055 05 109 	58 167	007	085	-		065 03	12 018		• • •	• •	5 069 1 - • • •	12 026	•
003	008		► 042	4 176	133		/24			► 044	L ▶	•	17	046	► 117	102	◆ 4 022 0	09 12	4 080	► 030	021 051	071	40
			0;	29 4 147	001 7			075	002	-	035				01	4 079 182	•	194 C	059 05	50	074	4 092	
				098												043 • 064			028 04:		03		
																				► 070			

High Throughput Screening for Phage Inhibitory ORFs

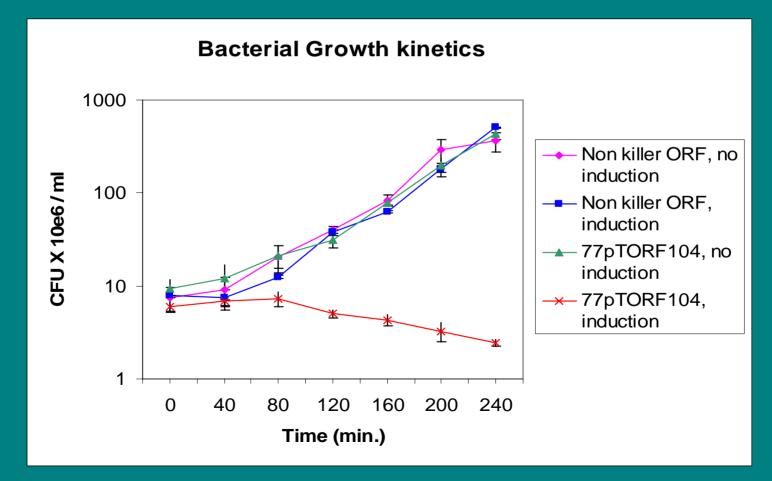
Systematic clone phage ORFs in inducible shutter vector Transform *S. aureus* with cloned phage ORFs Dot clones onto medium +/- inducer

(A) (2)

1

Identify inhibitory ORFs under induced conditions

Identification of inhibitory 770RF04


Without inducer

With inducer

Induction of 77ORF104 is Bacteristatic for *S. aureus*

Transform *S. aureus* with inhibitory ORF

Grow clones +/- inducer Determine phenotype of growth inhibition

Summary of PhageTech's Genomics and Functional Genomics Programs

Bacterial pathogen	Phages collected	Genomes sequenced	ORFs screened	Inhibitor families
S. aureus	150	27	964	31
S. pneumoniae	50	8	264	5
P. aeruginosa	70	11	210?	9?
Total	329	47	1438?	45?

Target Identification and Validation

ORF Affinity Approach to Target ID

Affinity chromatography of bacterial lysate over immobilized inhibitory ORF

Tryptic peptide mapping, mass spectrometry of eluted proteins

Target identification

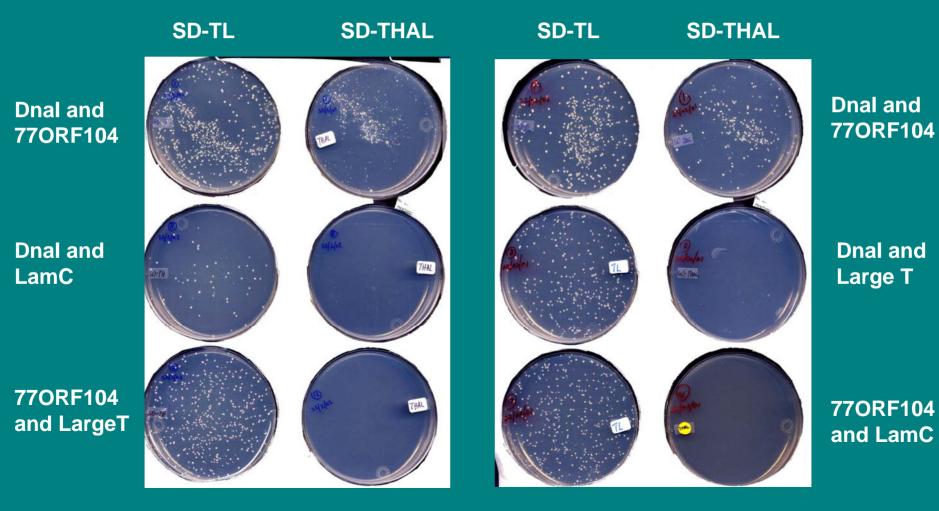
Target validation {

Confirm ORF-Target interaction Confirm target essentiality Determine target function

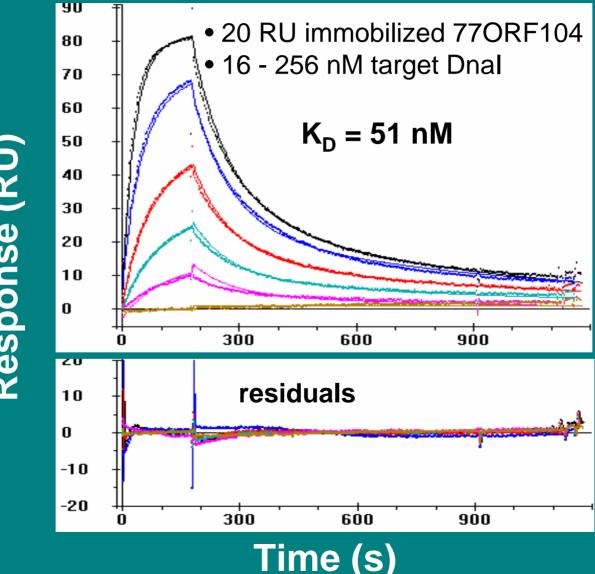
Identification of Dnal as a *S. aureus* Target of 770RF104

- R1 specific band Identification of the cellular target of 77ORF104 by affinity chromatography:

Purified 77ORF104 and GST proteins were crosslinked to affigel and then incubated with S. aureus lysate.

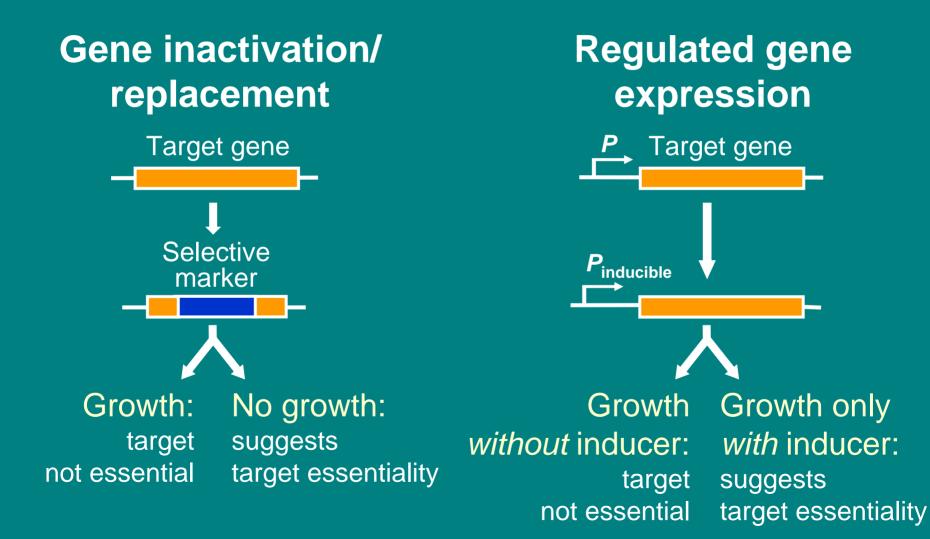

Specific bands were eluted by 1% SDS and proteins were resolved on a 12% SDS gel. Specific band was excised from the gel and subjected to mass spetrophotometry for identification.

Validation of Bacterial Targets from the Proteomics Platform


- Direct interactions between inhibitory phage ORFs and their cognate bacteral targets were confirmed by:
 - Yeast two-hybrid analysis
 - Far western (protein blotting)
 - BIAcore
 - Time-resolved FRET (TR-FRET)
 - Fluorescence polarization (FP)
- These bacterial targets are:
 - essential
 - attractive targets for antibiotic discovery

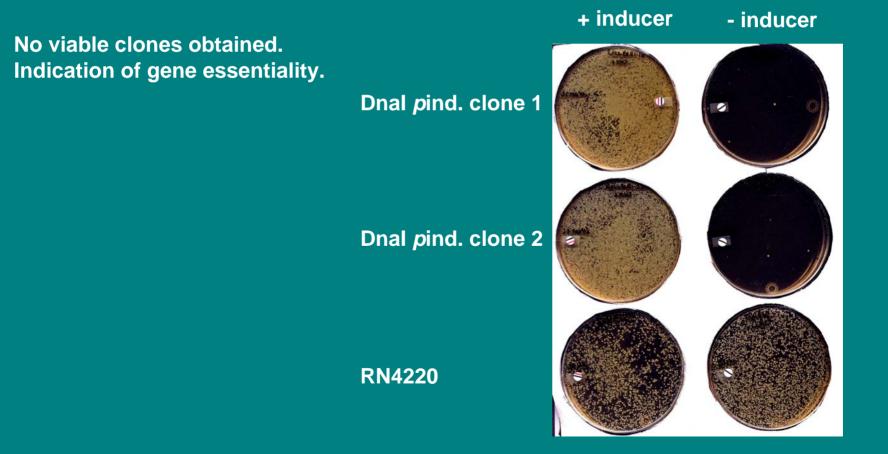
Yeast Two-Hybrid Analysis Dnal interacts with 770RF104

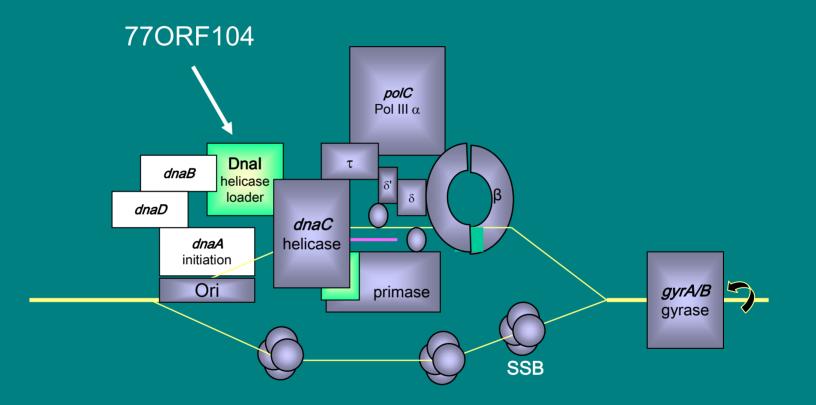
Dnal in activating domain; 770RF104 in binding domain Dnal in binding domain; 770RF104 in activating domain



Confirmation of 770RF104/Dnal Interaction by BIAcore

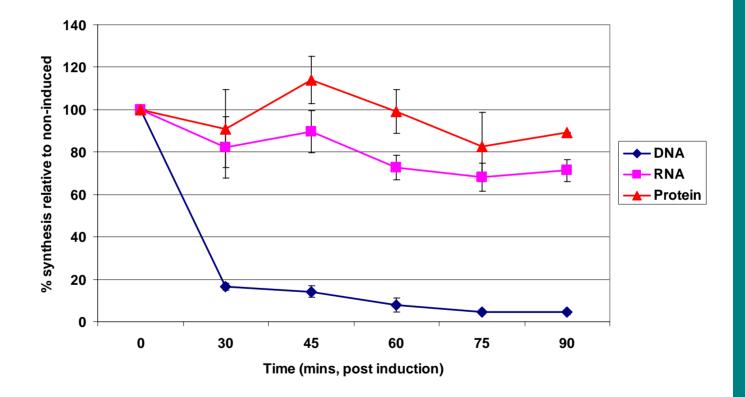
Response (RU)


Essentiality Analysis of *S. aureus* Target Genes


Dnal Is an Essential S. aureus Gene

Gene inactivation/ replacement

Regulated gene expression



Dnal Involved in DNA Replication Initiation

77ORF104 Inhibits ³H-thymidine Incorporation

Representatives of Small Molecules with Antibacterial Activity against *S. aureus*

Small molecule	77ORF104-DnaI interaction IC ₅₀ (µM)	MIC (µg/mL)	DNA synthesis IC ₅₀ (µg/mL)		
PT10056053	3	0.5 - 2	1		
PT10023719	8	8 – 16	20		
PT12008187	0.4	0.125 - 0.25	2		

S. aureus DNA Replication Proteins Identified by Phage Inhibitory ORFs

Representative of inhibitory ORF family ^a	ORF size (aa)	Bacterial target identified	Function of target	Essentiality of target ^b
77ORF104 ORF016	52 297	DnaI	Helicase loader	Essential
ORF025 ORF168 ORF240	58 74 58	DnaN	DNA Pol III β subunit	Essential
ORF078	71	DnaG	DNA Primase	Essential
ORF140	101	PT-R14	Involved in DNA replication	Not determined

Summary

- PhageTech has sequenced the genomes of 46 phages of *S. aureus, S. pneumoniae, and P. aeruginosa*
- ? families of phage-derived antimicrobial ORFs were identified
- Several novel, essential bacterial targets, including *S. aureus* Dnal, have been discovered and patented
- Proprietary ORF-target binding assays and enzymatic assays have been developed around these targets
- Diverse libraries of small molecules are being screened for inhibitors
- Key advantages of the PhageTech drug discovery platform include:
 - speed of analysis of small phage genomes
 - access to diversified targets
 - **inherent validation** of the bacterial target
 - requisite **positive control** for target-based screening assays

Acknowledgements

Francis Arhin, Pascale Bauda, Dominique Bergeron, Mario Callejo, Mohammed Dehbi, Vincent Ferretti, Nhuan Ha, Tony Kwan, John McCarty, Greg Moeck, Ramakrishnan Srikumar, Dan Williams, Jinzi Wu and all technicians

Michael DuBow, Philippe Gros and Jerry Pelletier

